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1. Introduction and summary

The holomorphic anomaly equation of the topological string [1, 2] relates the anti-

holomorphic derivative of the genus g topological string partition function F (g) with co-

variant derivatives of the partition functions of lower genus. This enables one to recursively

determine the partition function at each genus up to a holomorphic ambiguity which has

to be fixed by further information. A complete understanding of the holomorphic anomaly

equation and its recursive procedure to determine the partition functions at every genus

might lead to new insights in the understanding of the structure of the full topological

string partition function Z = exp
(
∑

λ2g−2F (g)
)

. For example in [3], Witten interpreted

Z as a wave function for the quantization of the space H3(X, R) of a Calabi-Yau X and

the holomorphic anomaly equation as the background independence of this wave function.

In [4], Yamaguchi and Yau discovered that the non-holomorphic part of the topological

string partition function for the quintic can be written as a polynomial in a finite number

of generators. This improves the method using Feynman rules proposed in [2]. This poly-

nomial structure was used in [5] to solve the quintic up to genus 51 and was applied to

other Calabi-Yau manifolds with one modulus in [5, 6].

The first aim of this paper is to generalize the polynomial structure of the topological

string partition function discovered in [4] to an arbitrary Calabi-Yau manifold with any

number of moduli.1 A related method for integrating the holomorphic anomaly equation

using modular functions was presented in [8, 9].

1This problem has independently solved in [7].
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Recently, an extension of the holomorphic anomaly equation which includes the open

topological string was proposed by Walcher [10]. Its solution in terms of Feynman rules

was proven soon after in [11]. The second task of this paper is to extend Yamaguchi and

Yau’s polynomial construction to the open topological string. We recently learned at the

Simons Workshop in Mathematics and Physics 2007 that a similar generalization for the

open topological string on the quintic will appear in [12].

The organisation of the paper is as follows. In the next section we briefly review the

extended holomorphic anomaly equation and the initial correlation functions at low genus

and number of holes which will be the starting point of the recursive procedure. Next we

introduce the polynomial generators of the non-holomorphic part of the partition functions

and show that holomorphic derivatives thereof can again be expressed in terms of these

generators. As the initial correlation functions are expressions in these generators we will

have thus shown that at every genus the partition functions will be again expressions in the

generators. Afterwards we assign some grading to the generators and show that F (g,h)
i1...in

, the

partition function at genus g, with h holes and n insertions, will be a polynomial of degree

3g−3+3h/2+n in the generators. Finally, we determine the polynomial recursion relations

and argue that, by a change of generators, the number of generators can be reduced by

one. In order to solve the holomorphic anomaly equation it now suffices to make the most

general ansatz of the right degree in the generators for the partition function and use

the recursion relation to match the coefficients. This procedure allows to determine the

partition function up to some holomorphic ambiguity in every step. In the third section we

apply our method to the real quintic and give the polynomial expressions for the partition

functions and reproduce some recent results.

Some subtleties of our approach still require further investigations, most of these are

related to parametrizing the holomorphic ambiguities. There is a freedom in determining

the holomorphic part of the generators which changes the complexity of the holomorphic

ambiguity at every step. For the closed string part of the quintic we fixed the holomorphic

part of the generators as in [13], the ambiguities in the partition functions are then polyno-

mials in the inverse discriminant. The ansatz for these polynomials can be deduced in order

to reproduce the right behaviour of the partition function at special points in the moduli

space. It would be interesting to further understand the structure of the holomorphic part

of the partition function and find out whether there is some systematic way to completely

determine the topological string partition function.

After we finished this paper a generalization of the holomorphic anomaly equations for

the open topological string appeared in [14].

2. Polynomial structure of topological string partition functions

2.1 Holomorphic anomaly

In this paper we consider the open topological string with branes as in [10]. The B-model on

a Calabi-Yau manifold X depends on the space M of complex structures parametrized by

coordinates zi, i = 1, . . . , h1,2(X). More precisely, the topological string partition function

F (g,h) at genus g with h boundaries is a section of a line bundle L2−2g−h over M [10].

– 2 –
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The line bundle L may be identified with the bundle of holomorphic (3, 0)-forms Ω on X

with first Chern class Gij̄ = ∂i∂̄j̄K . Here K is the Kähler potential and Gij̄ the Kähler

metric. Under Kähler transformations K → K(zi, z̄j̄) − ln φ(zi) − ln φ̄(z̄j̄), Ω → φΩ and

more generally a section f of Ln ⊗ L̄n̄ transforms as f → φnφ̄n̄f .

The fundamental objects of the topological string are the holomorphic three point

couplings at genus zero Cijk which can be integrated to the genus zero partition function

F0

Cijk = DiDjDkF0, ∂̄īCijk = 0 (2.1)

and the disk amplitudes with two bulk insertions ∆ij which are symmetric in the two

indices but not holomorphic

∂̄ī∆ij = −Cijk∆
k
ī , ∆k

ī = ∆īj̄e
KGkj̄ . (2.2)

Here ∆īj̄ denotes the complex conjugate of ∆ij and Di = ∂i + · · · = ∂
∂zi

+ . . . denotes the

covariant derivative on the bundle Lm ⊗ SymnT ∗ where m and n follow from the context.

T ∗ is the cotangent bundle of M with the standard connection coefficients Γi
jk = Gii∂jGki.

The connection on the bundle L is given by the first derivatives of the Kähler potential

Ki = ∂iK.2

The correlation function at genus g with h boundaries and n insertions F (g,h)
i1···in

is only

non-vanishing for (2g − 2 + h + n) > 0. They are related by taking covariant derivatives as

this represents insertions of chiral operators in the bulk, e.g. DiF (g,h)
i1···in

= F (g,h)
ii1···in

.

Furthermore, in [10] it is shown that the genus g partition function with h holes is

recursively related to lower genus partition functions and to partition functions with less

boundaries. This is expressed for (2g − 2 + h) > 0 by an extension of the holomorphic

anomaly equations of BCOV [2]

∂̄īF (g,h) =
1

2
C̄jk

ī

∑

g1+g2=g

h1+h2=h

DjF (g1,h1)DkF (g2,h2)+
1

2
C̄jk

ī
DjDkF (g−1,h)−∆j

ī
DjF (g,h−1) (2.3)

where

C̄ij
k̄

= C̄īj̄k̄G
īiGjj̄ e2K , C̄īj̄k̄ = Cijk. (2.4)

These equations, supplemented by

∂̄īF (1,0)
j =

1

2
CjklC

kl
ī +

(

1 − χ

24

)

Gjī, (2.5)

∂̄īF (0,2)
j = −∆jk∆

k
ī +

N

2
Gjī (2.6)

and special geometry, determine all correlation functions up to holomorhpic ambiguities.

In (2.5), χ is the Euler character of the manifold and in (2.6) N is the rank of a bundle

over M in which the charge zero ground states of the open string live. Similar to the closed

2See section two of [2] for further background material.
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topological string [2], a solution of the recursion equations is given in terms of Feynman

rules. These Feynman rules have been proven for the open topological string in [11].

The propagators for these Feynman rules contain the ones already present for the

closed topological string S, Si, Sij and new propagators ∆, ∆i. Note that these are not

the same as the ∆, with or without indices, that appear in [2] which there denote the

inverses of the S propagators. S, Si and Sij are related to the three point couplings Cijk

as

∂īS
ij = C̄ij

ī
, ∂īS

j = GīiS
ij , ∂īS = GīiS

i. (2.7)

By definition, the propagators S, Si and Sij are sections of the bundles L−2⊗SymmT with

m = 0, 1, 2. ∆ and ∆i are related to the disk amplitudes with two insertions by

∂̄ī∆
j = ∆j

ī
, ∂̄ī∆ = Gīi∆

i. (2.8)

They are sections of L−1 ⊗ SymmT with m = 0, 1. The vertices of the Feynman rules are

given by the correlation functions F (g,h)
i1···in

.

Note that the anomaly equation (2.3), as well as the definitions (2.7) and (2.8), leave the

freedom of adding holomorphic functions under the ∂ derivatives as integration constants.

This freedom is referred to as holomorphic ambiguities.

2.2 Initial correlation functions

To be able to apply a recursive procedure for solving the holomorphic anomaly equation, we

first need to have some initial data to start with. In this case the initial data consists of the

first non-vanishing correlation functions. The first non-vanishing correlation functions at

genus zero without any boundaries are the holomorphic three point couplings F (0,0)
ijk ≡ Cijk.

At genus zero with one boundary, the first non-vanishing correlation functions are the

disk amplitudes with two insertions. The holomorhpic anomaly equation (2.2) is solved

with (2.8) by

F (0,1)
ij ≡ ∆ij = −Cijk∆

k + gij (2.9)

with some holomorphic functions gij . Finally we solve (2.5) and (2.6). (2.5) can be inte-

grated wih (2.7) to

F (1,0)
i =

1

2
CijkS

jk +
(

1 − χ

24

)

Ki + f
(1,0)
i (2.10)

with ambiguity f
(1,0)
i . For the annulus we find

∂̄īF (0,2)
j = Cjkl∆

l∂̄ī∆
k + ∂̄ī

(

−gjk∆
k +

N

2
Kj

)

= ∂̄ī

(

1

2
Cjkl∆

k∆l − gjk∆
k +

N

2
Kj

)

(2.11)

and therefore

F (0,2)
i =

1

2
Cijk∆

j∆k − gij∆
j +

N

2
Ki + f

(0,2)
i (2.12)
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where f
(0,2)
i are holomorhpic. As can be seen from these expressions, the non-

holomorphicity of the correlation functions only comes from the propagators together with

Ki. Indeed, we will now show that this holds for all partition functions F (g,h).

2.3 Non-holomorphic generators

From the holomorphic anomaly equation and its Feynman rule solution it is clear that at

every genus g with h boundaries the building blocks of the partition function F (g,h) are

the propagators Sij , Si, S, ∆, ∆i and vertices F (g′,h′)
i1···in

with g′ < g or h′ < h. Here it

will be shown that all the non-holomorphic content of the partition functions F (g,h) can

be expressed in terms of a finite number of generators. The generators we consider are the

propagators Sij , Si, S, ∆i, ∆ as well as Ki, the partial derivative of the Kähler potential.

This construction is a generalization of Yamaguchi and Yau’s polynomial construction for

the quintic [4] where multi derivatives of the connections were used as generators. The

propagators of the closed topological string as building blocks were also used recently by

Grimm, Klemm, Marino and Weiss [9] for a direct integration of the topological string

using modular properties of the big moduli space, where all propagators can be treated on

equal footing.

In the following we prove that if the anti-holomorphic part of F (g,h) is expressed in

terms of the generators Sij, Si, S, ∆i, ∆ and Ki, then all covariant derivatives thereof are

also expressed in terms of these generators. As the correlation functions for small genus

and small number of boundaries are expressed in terms of the generators, it follows by

induction, that all F (g,h) are expressed in terms of the generators.

The covariant derivatives contain the Christoffel connection and the connection Ki of

L. By integrating the special geometry relation

∂̄īΓ
l
ij = δl

iGjī + δl
jGīi − CijkC

kl
ī (2.13)

to

Γl
ij = δl

iKj + δl
jKi − CijkS

kl + sl
ij, (2.14)

where sl
ij denote holomorphic functions that are not fixed by the special geometry relation,

we can express the Christoffel connection in terms of our generators. What remains is to

show that the covariant derivatives of all generators are again expressed in terms of the

generators. To obtain expressions for the covariant derivatives of the generators we first

take the anti-holomorphic derivative of the expression, then use (2.13) and write the result

as a total anti-holomorphic derivative again, for example

∂ī(DiS
jk) = ∂ī(δ

j
i S

k + δk
i Sj − CimnSmjSnk). (2.15)

This equation determines DiS
jk up to a holomorphic term. In this manner we obtain the

– 5 –
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following relations

DiS
jk = δj

i S
k + δk

i Sj − CimnSmjSnk + hjk
i , (2.16)

DiS
j = 2δj

i S − CimnSmSnj + hjk
i Kk + hj

i , (2.17)

DiS = −1

2
CimnSmSn +

1

2
hmn

i KmKn + hj
iKj + hi, (2.18)

DiKj = −KiKj − CijkS
k + CijkS

klKl + hij , (2.19)

Di∆
j = δj

i ∆ − gikS
kj + gj

i , (2.20)

Di∆ = −gijS
j + gj

i Kj + gi, (2.21)

where hjk
i , hj

i , hi, hij , gj
i and gi denote holomorphic functions (ambiguities). This completes

our proof that all non-holomorphic parts of F (g,h) can be expressed in terms of the gen-

erators. Next, we will determine recursion relations, asign some grading to the generators

and show that F (g,h)
i1···in

is a polynomial of degree 3g − 3 + 3h/2 + n.

2.4 Polynomial recursion relation

Let us now determine some recursion relations from the holomorhpic anomaly equation.

Computing the ∂̄ī derivative of F (g,h) expressed in terms of Sij , Si, S, ∆i, ∆, Ki, and

using (2.3) one obtains

C̄jk
ī

∂F (g,h)

∂Sjk
+ ∆j

ī

∂F (g,h)

∂∆j
+ Gīi

(

∂F (g,h)

∂Ki
+ Si ∂F (g,h)

∂S
+ Sij ∂F (g,h)

∂Sj
+ ∆i ∂F (g,h)

∂∆

)

=
1

2
C̄jk

ī

∑

g1+g2=g

h1+h2=h

DjF (g1,h1)DkF (g2,h2) +
1

2
C̄jk

ī
DjDkF (g−1,h) − ∆j

ī
DjF (g,h−1). (2.22)

Assuming linear independence of C̄jk
ī

, ∆j
ī

and Gīi the equation splits into three equations

∂F (g,h)

∂Sij
=

1

2

∑

g1+g2=g

h1+h2=h

DiF (g1,h1)DjF (g2,h2) +
1

2
DiDjF (g−1,h), (2.23)

∂F (g,h)

∂∆i
= −DiF (g,h−1), (2.24)

0 =
∂F (g,h)

∂Ki
+ Si ∂F (g,h)

∂S
+ Sij ∂F (g,h)

∂Sj
+ ∆i ∂F (g,h)

∂∆
. (2.25)

The last equation (2.25) can be rephrased as the condition that F (g,h) does not depend

explicitly on Ki by making a suitable change of generators

S̃ij = Sij, (2.26)

S̃i = Si − SijKj , (2.27)

S̃ = S − SiKi +
1

2
SijKiKj, (2.28)

∆̃i = ∆i, (2.29)

∆̃ = ∆ − ∆iKi, (2.30)

K̃i = Ki, (2.31)

– 6 –
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i.e. ∂F (g,h)/∂K̃i = 0 for F (g,h) as a function of the tilded generators. Let us now asign

a grading to the generators and covariant derivatives, which is naturally inherited from

the U(1) grading given by the background charge for the U(1) current inside the twisted

N = 2 superconformal algebra. The covariant holomorphic derivatives Di carry charge +1

as they represent the insertion of a chrial operator of U(1) charge +1. As Ki is part of the

connection, it is natural to asign charge +1 to Ki. From the definitions (2.7) and (2.8) one

may asign the charges 1/2, 1, 3/2, 2, 3 to the generators ∆i, Sij , ∆, Si, S, respectively. The

correlation functions F (g,h)
i1···in

for small g and h are a polynomial of degree 3g− 3+ 3h/2+ n

in the generators. By the recursion relations, it immediately follows that this holds for all

g and h.

3. The real quintic

As an example of our polynomial construction of the partition functions F (g,h) we consider

the real quintic

X := {P (x) = 0} ⊂ P
4

where P is a homogeneous polynomial of degree 5 in 5 variables x1, . . . , x5 with real coef-

ficients. The real locus

L = {xi = x̄i}

is a Lagrangian submanifold on which the boundary of the Riemann surface can be mapped.

For the closed topological string the polynomial construction was discovered by Ya-

maguchi and Yau in [4] and has been used in [5] to calculate F (g,0) up to g = 51. The

open string case was analyzed in [10, 15] where the real quintic is given as an example for

solving the extended holomorphic anomaly equation. We will follow the notation of these

two papers.

The mirror quintic has one complex structure modulus, which will be denoted by z.

To parametrize the holomorphic ambiguities we introduce as a holomorphic generator the

inverse of the disrciminant

P =
1

1 − 55z
. (3.1)

The Yukawa coupling is given by

Czzz = 5P/z3. (3.2)

For computational convenience we use instead of the generators Szz, Sz, S, ∆z and ∆ the

generators

T zz = 5P
Szz

z2
, T z = 5P

Sz

z
, T = 5PS, Ez = P 1/2 ∆z

z
and E = P 1/2∆. (3.3)

To obtain explicit forms of the generators we start with the integrated special geometry

relation (2.14) and choose similar to [13]

sz
zz = −1/z (3.4)

– 7 –
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in order to cancel the singular term in the holomorhpic limit of Γz
zz. In the language of [2]

this corresponds to a gauge choice of f = z−1/2 and v = 1. This choice of holomorhpic

ambiguities fixes the propagators T zz, T z and T as

T zz = 2θK − zΓz
zz − 1, (3.5)

T z = (θK)2 − θ2K − 1

4
, (3.6)

T =

(

1

5
P − 9

20

)(

θK − 1

2

)

+
1

2
(θT z − (P − 1)T z) , (3.7)

with θ = z ∂
∂z . This choice of generators leads to the following ambiguities in the derivative

relations of the generators (2.16)–(2.19)

5Phzz
z /z = −2

5
P +

9

10
, (3.8)

5Phz
z =

1

5
P − 9

20
, (3.9)

5Pzhz = − 101

1250
P +

2241

20000
, (3.10)

z2hzz = −1

4
. (3.11)

For the open string generators Ez and E we make the same choice as in [10] by setting

gzz = 0 and (3.12)

gz
z = 0, (3.13)

which leads to

Ez = −1

5
P−1/2z2∆zz, (3.14)

E = −1

2
(P − 1)Ez + θEz − T zzEz + (θK)Ez. (3.15)

Finally, taking the holomorphic limit of (2.21) we obtain the last ambiguity in the derivative

relations

zgz = −3

4
z1/2. (3.16)

Next, we fix the ambiguities for the initial correlation functions (2.9), (2.10) and (2.12) as

in [10] and obtain

z2F (0,1)
zz = −5P 1/2Ez, (3.17)

zF (1,0)
z =

28

3
θK +

1

2
T zz +

1

12
P − 13

6
, (3.18)

zF (0,2)
z =

5(Ez)2

2
+

θK

2
+

3P

250
− 3

250
. (3.19)

It is now straightforward to use our method to determine higher F (g,h) by writing the most

general polynomial of degree 3g−3+3h/2 in the generators T̃ zz, T̃ z, T̃ , Ẽz and Ẽ and using

– 8 –
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the polynomial recursion relations. For F (2,0) and F (3,0) the gap condition at the conifold

point [5] and the known expressions for the contribution of constant maps is enough to fix

the holomorphic ambiguities and we give the explicit expressions in appendix A. For F (1,1)

and F (0,3) the vanishing of the first two instanton numbers fixes the ambiguities and read

F (1,1) =
28Ẽ
3
√

P
+

13Ẽz

6
√

P
− Ẽz

√
P

12
− ẼzT̃ zz

2
√

P
− 9

√
zP

40
+

211
√

z

10
, (3.20)

F (0,3) =
1887

√
z

2500
+

Ẽ
2
√

P
+

3Ẽz

250
√

P
− 5(Ẽz)3

6
√

P
− 3Ẽz

√
P

250
− 3

√
zP

625
. (3.21)

In appendix A we also give the solution of F (1,2) and F (2,1) up to the holomorphic ambi-

guities. It would be interesting to fix this ambiguities by some further input.
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A. The polynomials

Using the method described in this work we obtained polynomial expression for the topo-

logical string partition functions. In this appendix we give the explicit expressions of some

of these polynomials in terms of the transformed generators.

F (2,0) = −1473

2000
− 139

375P
− 43P

9000
+

P 2

1200
+

140T̃

9P
− 5T̃ z

36
+

65T̃ z

18P
− 29T̃ zz

450

+
253T̃ zz

900P
+

13PT̃ zz

1440
− 5T̃ zT̃ zz

6P
+

(T̃ zz)2

30
− 29(T̃ zz)2

120P
+

(T̃ zz)3

24P
(A.1)

F (3,0) = − 2507719933

22680000000
− 1208767

30000000P 2
− 10405909

90000000P
− 1936909P

2835000000
+

4661P 2

5040000

− 29P 3

90000
+

P 4

25200
+

2021T̃

67500
+

13066T̃

5625P 2
+

23077T̃

5000P
− 47PT̃

9000
− 1316T̃ 2

27P 2
− 12319T̃ z

360000

+
14437T̃ z

45000P 2
+

26201T̃ z

27000P
+

1067PT̃ z

90000
− P 2T̃ z

480
− 611T̃ T̃ z

27P 2
+

47T̃ T̃ z

54P
+

1603(T̃ z)2

21600

−105539(T̃ z)2

27000P 2
− 2621(T̃ z)2

27000P
− 209(T̃ z)3

81P 2
− 7573T̃ zz

720000
− 10231T̃ zz

360000P 2
+

118493T̃ zz

2160000P

+
48631PT̃ zz

4320000
− 4453P 2T̃ zz

1080000
+

19P 3T̃ zz

36000
− 611T̃ T̃ zz

10800
− 11891T̃ T̃ zz

6750P 2
+

1363T̃ T̃ zz

3375P

+
2547T̃ z T̃ zz

20000
− 187013T̃ z T̃ zz

135000P 2
− 30983T̃ z T̃ zz

135000P
− 1613PT̃ z T̃ zz

72000
+

47T̃ T̃ z T̃ zz

9P 2

– 9 –



J
H
E
P
1
0
(
2
0
0
7
)
0
4
5

−3997(T̃ z)2T̃ zz

2700P 2
+

2719T̃ z T̃ zz

5400P
+

61019(T̃ zz)2

1080000
− 385429(T̃ zz)2

2160000P 2
− 15577(T̃ zz)2

360000P

−48557P (T̃ zz)2

2160000
+

1307P 2(T̃ zz)2

432000
+

1363T̃ (T̃ zz)2

900P 2
− 47T̃ (T̃ zz)2

225P
− 251T̃ z(T̃ zz)2

2700

−14857T̃ z(T̃ zz)2

54000P 2
+

26227T̃ z(T̃ zz)2

54000P
+

293(T̃ z)2(T̃ zz)2

360P 2
− 7123(T̃ zz)3

108000

+
29(T̃ zz)3

8100P 2
+

29761(T̃ zz)3

216000P
+

2539P (T̃ zz)3

259200
− 47T̃ (T̃ zz)3

180P 2
+

19T̃ z(T̃ zz)3

30P 2

−131T̃ z(T̃ zz)3

720P
+

7(T̃ zz)4

360
+

203(T̃ zz)4

1500P 2
− 3797(T̃ zz)4

36000P
− 3T̃ z(T̃ zz)4

20P 2
− 3(T̃ zz)5

40P 2

+
11(T̃ zz)5

480P
+

(T̃ zz)6

80P 2
(A.2)

F (1,2) =
(Ẽ)(Ẽz)

12
− 17(Ẽz)2

120
− 14(Ẽ)2

3P
− 13(Ẽ)(Ẽz)

6P
− 113(Ẽz)2

120P
− 211(Ẽ)

√
z

10
√

P

−71(Ẽz)
√

z

20
√

P
+

9

40
(Ẽ)

√
z
√

P − 9

80
(Ẽz)

√
z
√

P +
(Ẽz)2P

24
+

9

40
(Ẽz)

√
zP 3/2

+
53T̃

30P
− 17(T̃ z)

600
+

71(T̃ z)

300P
− 25(Ẽz)2(T̃ z)

6P
− 33(T̃ zz)

5000
+

7(Ẽz)2(T̃ zz)

24

−73(T̃ zz)

10000P
+

(Ẽ)(Ẽz)(T̃ zz)

2P
− 4(Ẽz)2(T̃ zz)

3P
+

7P (T̃ zz)

5000
− (T̃ z)(T̃ zz)

20P
+

3(T̃ zz)2

2500

−3(T̃ zz)2

2500P
+

(Ẽz)2(T̃ zz)2

2P
+ a

(1,2)
−1 P−1 + a

(1,2)
0 + a

(1,2)
1 P + a

(1,2)
2 P 2 (A.3)

F (2,1) =
278(Ẽ)

375P 3/2
− (Ẽz)

3000P 3/2
+

1473(Ẽ)

1000
√

P
+

979(Ẽz)

3600
√

P
+

43(Ẽ)
√

P

4500
− 157(Ẽz)

√
P

14400

− 1

600
(Ẽ)P 3/2 +

181(Ẽz)P 3/2

18000
− 1

600
(Ẽz)P 5/2 +

3
√

zT̃

4
− 280(Ẽ)T̃

9P 3/2
− 65(Ẽz)T̃

9P 3/2

−211
√

zT̃

3P
+

5(Ẽz)T̃

18
√

P
+

341
√

z(T̃ z)

1200
− 65(Ẽ)(T̃ z)

9P 3/2
− 3331(Ẽz)(T̃ z)

900P 3/2
− 287

√
z(T̃ z)

20P

+
5(Ẽ)(T̃ z)

18
√

P
− 103(Ẽz)(T̃ z)

300
√

P
+

29

240
(Ẽz)

√
P (T̃ z) +

261
√

zP (T̃ z)

800
− 55(Ẽz)(T̃ z)2

9P 3/2

+
13
√

z(T̃ zz)

2400
− 253(Ẽ)(T̃ zz)

450P 3/2
− 1517(Ẽz)(T̃ zz)

1800P 3/2
− 239

√
z(T̃ zz)

240P
+

29(Ẽ)(T̃ zz)

225
√

P

−419(Ẽz)(T̃ zz)

3600
√

P
− 13

720
(Ẽ)

√
P (T̃ zz) +

131(Ẽz)
√

P (T̃ zz)

1200
+

231
√

zP (T̃ zz)

1600

− 13

720
(Ẽz)P 3/2(T̃ zz) − 39

800

√
zP 2(T̃ zz) +

5(Ẽz)T̃ (T̃ zz)

3P 3/2
− 9

√
z(T̃ z)(T̃ zz)

400

+
5(Ẽ)(T̃ z)(T̃ zz)

3P 3/2
− 313(Ẽz)(T̃ z)(T̃ zz)

90P 3/2
+

211
√

z(T̃ z)(T̃ zz)

100P
+

151(Ẽz)(T̃ z)(T̃ zz)

180
√

P

+
9
√

z(T̃ zz)2

800
+

29(Ẽ)(T̃ zz)2

60P 3/2
− 1537(Ẽz)(T̃ zz)2

3600P 3/2
+

299
√

z(T̃ zz)2

800P
− (Ẽ)(T̃ zz)2

15
√

P

+
761(Ẽz)(T̃ zz)2

1800
√

P
− 109(Ẽz)

√
P (T̃ zz)2

1440
− 9

400

√
zP (T̃ zz)2 +
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H
E
P
1
0
(
2
0
0
7
)
0
4
5

17(Ẽz)(T̃ z)(T̃ zz)2

12P 3/2
− (Ẽ)(T̃ zz)3

12P 3/2
+

17(Ẽz)(T̃ zz)3

30P 3/2
− 3(Ẽz)(T̃ zz)3

20
√

P
− (Ẽz)(T̃ zz)4

8P 3/2

+
√

z
(

a
(2,1)
−1 P−1 + a

(2,1)
0 + a

(2,1)
1 P + a

(2,1)
2 P 2 + a

(2,1)
3 P 3

)

(A.4)

B. Ooguri-Vafa invariants

Replacing the generators by their holomorphic limits we can extract the Ooguri-Vafa [16]
invariants from the partition functions. We used for that the conjectured formula in [10].

It should be noted however that in our formalism the disk invariants n
(0,1)
d are extracted

from 1
2F (0,1) and the invariants n

(1,1)
d are extracted from 2F (1,1) in order to reproduce the

numbers given in [10]. The clarification of these factors and a better understanding of the
multicover formula remains for future work.

d n
(0,1)
d

1 30

3 1530

5 1088250

7 975996780

9 1073087762700

11 1329027103924410

13 1781966623841748930

15 2528247216911976589500

17 3742056692258356444651980

19 5723452081398475208950800270

21 8986460098015260183028517362890

23 14415044640432226873354788580437780

25 23538467987973866346057268850924917500

d n
(0,2)
d

2 0

4 26700

6 38569640

8 58369278300

10 93028407124632

12 153664503936698600

14 260548631710304201400

16 450589019788320352336020

18 791322110332876233623166320

20 1406910190370608901650146628380

22 2526625340233528751485600411725000

24 4575532116961071429530804693412171800

26 8344559227219651245031796423390078968320

d n
(1,1)
d n

(0,3)
d

1 0 0

3 0 0

5 −2742710 117240

7 −6048504690 230877000

9 −12856992579490 462884815200

11 −26585948324529250 915855637274880

13 −54291611312718557630 1804779141114184800

15 −110080893552894679282680 3550856539832617041600

17 −222191364375273687227005740 6982400759593452862593000

19 −447094506460510952531302800200 13728998788327325796353771400

21 −897635279681074059801246576212490 26997741895033909653348464555040

23 −1799147979326007629352167081015835920 53102177883967748623102463313529200

25 −3601314439974327136341483249650915239910 104474620947846872117630548142256678000
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